This site is part of the Global Exhibitions Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 3099067.


Natural Colors: A Shade More Healthy


Color entices us to eat foods, suggesting flavor and freshness. Processing and storage take a toll, so manufacturers often add coloring agents to enhance their offerings. However, several current factors have motivated product designers to rethink their strategies when choosing colorants.

“Artificial,” or certified, colors have long been the first choice: They tend to be more economical; easily produce uniform, intense colors; stand up to heat, light, pH and other factors; and do not add off-flavors. But trends toward more-natural products, ingredient sensitivities and debates over the safety of FD&C certified colors have increased interest in naturally sourced colorants. “The main factor overseas appears to be concerns over the allergenicity or sensitivity to artificial colors, such as led to the recent banning of Red 2G in Europe,” says Jeff Greaves, founder and manager, Food Ingredient Solutions, LLC, Teterboro, NJ. “In the United States, the main driver is the general trend toward natural and organic products, though CSPI just petitioned FDA to ban all artificial colors as unsafe.”

As an added bonus, many of the plant-derived compounds responsible for the natural hues offer some nutritional value, as well.

Natural pedigrees

FDA doesn’t actually recognize “natural colors” unless a product receives its color from the food itself. Berry juice in a berry beverage makes it naturally colored; berry juice in a cherry pie renders it “artificially colored.” FDA lists exempt colorants, many derived from natural plant and animal sources, and these are what are generally termed “natural.” The list also contains inorganic substances, like titanium dioxide and mica.

These colors and their approved uses are listed in Title 21 Code of Federal Regulations Part 73, “Listing of Color Additives Exempt From Certification.” They aren’t all actually “natural” in the strictest sense. Some can be synthetically derived. “Generally, a natural color is one from a natural source and is minimally processed to achieve a stable product in a usable form, avoiding other synthetic ingredients,” says Greaves. “A nature-identical color, such as some beta carotene, is chemically synthesized. For coloring purposes, natural and synthetic beta perform more or less the same, though I have heard they have different nutritional benefits.” He notes other carotenoids, such as canthaxathin, apocarotenal, some astaxathin and some lycopene can also be nature-identical.

Color me healthy

Say what you will about artificial colors being “bad for you”—the significant point is many natural colors derive their functionality from “healthy” compounds. “A number contain actives as chromaphores, such as anthocyanins in red cabbage, purple sweet potato, red cabbage, grape juice, elderberry, bilberry, grape skin extract; curcumin in turmeric; and beta carotene in beta and mixed carotenes,” says Greaves. Because of the “linear relationship between color strength and functional ingredient concentration,” nutraceutical companies often use natural colors as functional ingredients, he explains.

One noncertified color qualifies as a bona fide nutrient. Riboflavin, vitamin B2, gives a yellow color. But others are becoming known for beneficial effects.

Carotenoids, which produce red, yellow and orange hues, include carotenes and lycopene, plus the xanthophylls bixin and norbixin (annatto), capsanthin (paprika), lutein (marigold) and zeaxanthin (corn). Carotenes, especially beta carotene, are vitamin A precursors. Bixin and norbixin lack the necessary chemical structures to be vitamin A precursors; however, limited evidence says they may have hyperglycemic effects. Lutein contributes to eye health and may fight macular degeneration. Carotenoids might provide protection against photosensitization and mutations induced by UV light. They help prevent oxidative damage of the lipid components in cell membranes and in circulating blood, and stimulate immune function. However, debate continues whether carotenoids have anticarcinogenicity and antiatherogenic properties, but most of the recent research disproves theories that beta carotene alone is responsible. In fact, two studies (the Alpha-Tocopherol b-Carotene Trial in Finland with 29,133 men who were heavy smokers, and the U.S.-based b-Carotene and Retinol Efficacy Trial with more than 18,000 persons with exposure to asbestos or cigarette smoking) showed an elevated risk of death from lung cancer in the group receiving high-dose beta carotene supplements.

Flavonoids, which include antioxidant anthocyanins, create many of the blues, purples, magentas, reds and oranges. The most-common anthocyanins in foods are perargonidin, cynaidin, delphinidin, peonidian, petunidin and malvidin. Flavonoids’ biological properties can help reduce the risk of disease by acting as antioxidants, extending vitamin C activity, protecting low-density lipoprotein (LDL) cholesterol from oxidation, inhibiting platelet aggregation, and acting as anti-inflammatory and antitumor agents.

With anthocyanins, “the more of the colorant you have present, the more of the ‘active’ compound that is present, as well,” says Byron D. Madkins, director, food and beverage development and applications-color, Chr. Hansen, Inc., Milwaukee. “Thus, the more concentrated one of these colorants, the higher the antioxidant activity.”

Betalaines, in beets, produce reds (betacyanins) and yellows (betaxanthins). These compounds show antiviral and antimicrobial activity in addition to their antioxidant properties. Betalains might function as antioxidants for cell membranes and LDL cholesterol, aiding heart health.

Curcuminoids in turmeric provide a bright-yellow color, as well as effective anti-inflammatory activity. The active phenolic components may inhibit cancer of the stomach, breast, lung and skin, and provide antimutagenic activity.

A more-stable stable

Part of the difficulty in using many natural colors is their inherent instability. Any antioxidant is susceptible to oxidation. Heat and exposure to light can degrade colors, and changes in pH can shift the resulting color to a different hue. For example, annatto turns pink under acidic conditions, and pHs greater than 7 make turmeric look red and rapidly fade. Metal ions, such as iron, copper, magnesium and aluminum, can catalyze oxidative color loss in carotenoids.

Manufacturers are successfully seeking solutions. Emulsification and encapsulation techniques can increase stability and also make natural colors more user-friendly. Madkins also mentions “ways to take advantage of some of the inherent inter- and intra-chemical interactions at the molecular level to enhance the stability of some fruit and vegetable juices in application.”

« Previous12Next »
comments powered by Disqus